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Abstract. In this paper modelling and identification of a laboratory helicopter with the final aim to design a 
control system is presented. The CE 150 made by Humusoft is a laboratory helicopter designed for studying 
system dynamics and control engineering principles. First, the helicopter set-up is depicted. Next, theoretical and 
empyric modelling is systematically described. Identification of the necessary parameters is tackled and the 
results are presented. Finally, model validation is discussed and a simple control approach is proposed. 
 
 
1. Introduction 
 
Modelling and simulation are very important approaches for designing control systems. Therefore, laboratory 
set-ups, which model real processes, and mathematical models have a significant role [1–3]. The CE150 is a 
laboratory helicopter made by Humusoft [4]. It is used for studying system dynamics and control engineering 
principles from the theoretical point of view and enables a wide range of practical experiments in the fields of 
modelling, simulation and control. The goal of modelling and identification is to prepare a basis for the students’ 
laboratory assignments, such as designing a multivariable controller that ensures satisfactory control in the whole 
operating range. There are two well known modelling approaches: theoretical and experimental. Usually, both 
approaches have to be combined, which is also the case in modelling of the laboratory helicopter. 
 
 
2. The laboratory helicopter set-up 
 
The laboratory helicopter set-up (see figure 1) comprises a helicopter body carrying two motors, which drive the 
main and the tail propeller of the helicopter, and a servomechanism, which shifts the centre of gravity by moving 
a weight along the helicopter’s horizontal axis. The helicopter body is connected to a base so that two degrees of 
freedom are enabled: 
 

• rotation around the horizontal axis  pitch angle ψ; 
• rotation around the vertical axis  azimuth φ. 

 
The axes of the main and tail rotor and the vertical and horizontal helicopter axis are perpendicular to each-other. 
The helicopter model can be represented as a non-linear multi-variable system with three inputs (measured in 
machine units [–1 ,1]): 
 

• u1 – voltage driving the main motor; 
• u2 – voltage driving the tail motor; 
• u3 – position of the servomechanism (weight)1; 

 
and two outputs (measured in radians): 
 

• ψ – pitch angle; 
• φ – azimuth. 

                                                 
1 From now on, let us presume that the weight never moves from the neutral position during operation of the 
helicopter (u3 = 0). Otherwise, we should model the movement as a disturbance that affects both the centre of 
gravity and the moment of inertia of the helicopter body. However, this is beyond the scope of this paper. 



 
The inputs u1 and u2 are measured in machine units ranging from –1 to 1. An interface unit, which connects the 
helicopter and the computer, converts the inputs from machine units to appropriate voltage values that drive the 
motors. 
 
Output ψ denotes the pitch 
angle, i.e. the angle between the 
vertical axis and the longitudinal 
axis of the helicopter body, 
whereas φ denotes the azimuth, 
i.e. the angle in the horizontal 
plane between the longitudinal 
axis of the helicopter body and 
its zero position. Both angles are 
measured in radians. 
 
The voltage driving the main 
motor u1 and the voltage driving 
the tail motor u2 affect both the 
pitch angle ψ and the azimuth φ, 
therefore we can say that the 
mentioned interactions make the 
system multivariable. However, 
it is possible to fix one (or both) 
degree of freedom by tightening 
the intended screw(s) in the helicopter base when needed. 
 
There are analogue connections between the helicopter and the interface unit, which converts the signals from 
analogue to digital and vice versa. The interface unit is connected to a computer via a multifunction input/output 
card. All the experiments are done in Matlab-Simulink environment using Real Time Toolbox [5]. 
 
 
3. Theoretical modelling 
 
When modelling a system it is important to find a balance between simplicity and complexity of the model, 
according to its purpose and operating conditions. The model has to be clear, concise and flexible, yet it must 
consider all the relevant sub-processes in the system. 
 
Modelling of dynamic systems is a cyclic process, therefore usually many iterations are needed before a 
satisfactory model is obtained [6]. Sometimes validation of a particular sub-system gives unsatisfactory results. 
Hence, another approach has to be considered and some of the previously neglected properties have to be taken 
into account. In the following section, modelling procedure will be described. Obviously, only the last iteration 
of the procedure is presented in the paper and the model is proposed in its final form. 
 
 
3.1. Modelling of sensors 
 
Both angle sensors are linear, so the modelling is rather straightforward. 
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Signals from the sensors are denoted by yψ and yφ. 
 
 

 
 

Figure 1: The laboratory helicopter set-up 



3.2. Vertical plane dynamics 
 
We start with torque balance equation around the horizontal axis. 
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Here, J1 denotes the moment of inertia around the horizontal axis, τ1 the torque of the propulsion force of the 
main propeller, τFg the torque of the gravitation force of the helicopter body, τBψ the friction torque and τG the 
gyroscopic effect caused by rotation of the main propeller and rotation of the helicopter body around the vertical 
axis. 
 
The torque of the propulsion force of the main motor is modelled experimentally. The static characteristic is 
derived from the dominant ventilator characteristic as described in eq. (4). The motor-propeller dynamics are 
relatively fast comparing to the dynamics of the helicopter body. Therefore, it can be modelled as a 2nd order 
transfer function with two equal poles – see eq. (5). 
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The other torques are defined using basic physical laws. 
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In eq. (6), Fg is the gravitation force, l is the lever between the centre of gravity and the horizontal axis of the 
helicopter body, and Mg is the appropriate torque. In eq. (7) we assume that the friction torque is a sum of a 
Coulomb part and a linear part, where the latter is proportional to the angular velocity. The torque caused by the 
gyroscopic effect (see eq. (8)) is proportional to the product of the angular velocity of the main propeller, the 
angular velocity of the body around the vertical axis, and the cosine of the pitch angle ψ. It is presumed that τ1 is 
proportional to the angular velocity of the main motor. The constant of the gyroscopic coupling is denoted 
by Kgyro. 
 
  
3.3. Horizontal plane dynamics 
 
We start with torque balance equation around the vertical axis. 
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Here, J2 denotes the moment of inertia around the vertical axis, τ2 the torque of the propulsion force of the tail 
propeller, τBφ the friction torque, and τr the reaction torque caused by the main propeller rotation. 
 
Eqs. (10), (11) and (12) are defined in the same manner as in the previous subsection. 
The other torques are defined using basic physical laws. 
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The reaction torque caused by the main propeller rotation is also modelled experimentally. The static 
characteristic is derived from the dominant ventilator characteristic as described in eq. (13). The dynamics are 
modelled as a transfer function in eq. (14) where the denominator is the same as in eq. (5). Due to the moment of 
inertia of the main rotor, which affects the reaction torque, numerator dynamics are assumed as well. 
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3.4. The whole system – 
Simulink model 
 
Using eqs. (1) – (14) a Simulink 
block diagram of the whole 
system depicted in figure 2 was 
developed. 
 
 
4. Measurements and 
identification of the 
parameters 
 
Once the theoretical model of 
the laboratory helicopter set-up 
is obtained, 22 parameters have 
to be determined: kψ, yψ0, kφ, yφ0, 
Mg, J1, Bψ1, Bψ2, J2, Bφ1, Bφ2, T1, 
a1, b1, T2, a2, b2, T1r,T2r, ar, br in 
Kgyro. There are two possible 
approaches: 
 

• direct measurements of the accessible physical quantities; 
• identification, i.e. experimental estimation of the parameters by means of measuring inputs and 

outputs [7–9]. 
 
 
The angle sensors: kψ, yψ0, kφ, yφ0 
 
The sensors can be calibrated by simple angle measurements. 
 
kψ = π / 1024 [rad], 
yψ0 = 275 π / 1024 [rad], 
kφ = π / 1024 [rad], 
yφ0 = 0.7 π [rad]. 
 
 
The torque of the gravitation force of the helicopter body: Mg 
 
The parameter Mg is estimated by hanging N weights weighing mi (i = 1,…,N) on the helicopter body behind and 
in front of the horizontal axis. We can obtain Mg by measuring the pitch angle ψ and the appropriate levers li in 
steady state. 
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Figure 2: The block diagram of the whole system 
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In order to mitigate the effect of Coulomb friction on the measurements and thus obtain better accuracy, it is 
reasonable to carry out many measurements with different weights hung at different places and then calculate the 
average Mg. 
 
Mg = 0.07088 N m 
 
 
Vertical plane dynamics: J1, Bψ1, Bψ2 
 
The parameters concerning the vertical plane dynamics are estimated by means of identification. When 
conducting this experiment both motors are turned off and rotation in the horizontal plane is disabled by 
tightening the corresponding screw. Due to constrained motion of the pitch angle ψ, the model base is fixed in 
the perpendicular position, which means that the helicopter base is tilted 90 degrees so that the vertical axis is 
put in a horizontal position. Obviously, the new position has to be considered when calibrating the sensor (offset 
π/4). The helicopter response to an initial condition (tilt of the helicopter body) is finally recorded. 
 
The parameters are identified by offline model adaptation, which is a method suitable for nonlinear identification 
problems such as the laboratory helicopter. In this case, the minimisation of the criterion function, which takes 
into account the sum of squares of the difference between the real response yreal and the model response ymod to 
the initial condition (see eq. (16)), is carried out using the Nelder-Mead method. 
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Before the optimisation it is reasonable to roughly estimate the parameters from the response signal, in order not 
to end up in a local minimum that provides inadequate results. The optimisation returns the following 
parameters. 
 
J1 = 2.43 · 10-3 kg m2 
Bψ1 = 1.53 · 10-4 kg m2 s-1 
Bψ2 = 1.03 · 10-4 kg m2 s-1 
 
 
Horizontal plane dynamics: J2, Bφ1, Bφ2 
 
The parameters concerning the horizontal plane dynamics are identified in a similar fashion. Both motors are 
turned off and rotation in the vertical plane is disabled by tightening the corresponding screw. The model base is 
fixed in the perpendicular position, therefore the influence of the torque of the gravitation force of the helicopter 
body has to be considered in the adjusted model as well. The helicopter response to an initial condition (tilt of 
the helicopter body) is finally recorded. Again, the parameters are identified by offline model adaptation. 
 
J2 = 2.02 · 10-3 kg m2 
Bψ1 = 5.50 · 10-6 kg m2 s-1 
Bψ2 = 5.96 · 10-4 kg m2 s-1 
 
 
The torque of the propulsion force of the main propeller: T1, a1, b1 
 
The parameters a1 and b1 represent the static characteristic of the main motor-propeller subsystem. They can be 
identified from the measurements of the static characteristic. 
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Using the least squares method, the following parameters are obtained. 
 
a1 = 0.1244 N m 
b1 = 0.0496 N m 
 
Parameter T1 is identified by offline model adaptation to a step response signal of the helicopter body. 
 
T1 = 0.0904 s 
 
 
The torque of the propulsion force of the tail propeller: T2, a2, b2 
 
In a similar manner as in the previous subsection, but with the helicopter in the perpendicular position, the 
following parameters are obtained. 
 
a2 = 0.1959 N m 
b2 = 0.0202 N m 
T2 = 0.0567 s 
 
 
The reaction torque caused by the main propeller rotation: T1r,T2r, ar, br 
 
In a similar manner as in the previous subsection, again with the helicopter base in the perpendicular position, 
the following parameters are obtained. 
 
ar = 0.0148 N m 
br = 0.0108 N m 
T1r = 0.0017 s 
T2r = 0.1908 s 
 
 
The gyroscopic effect: 
Kgyro 
 
Parameter Kgyro is identified by 
offline model adaptation. The 
main motor input u1 is set to a 
constant value, so that it can be 
assumed the angular velocity of 
the main propeller is constant. In 
this manner, the system should 
stabilize at a certain pitch angle 
ψ, which should not be too close 
to π/4. Next, the body of the 
helicopter is rotated2 around its 
vertical axis, so that the angular 
velocity is approximately 
constant. The rotation causes the gyroscopic effect, which results in a change of the pitch angle. The signals ψ 
and φ are recorded. The angular velocity around the vertical axis is derived (dφ / dt) and used for identification 
as a subsystem input.  
 
Kgyro = 0.3185 s 
 
 
                                                 
2 By hand, without touching the body. 

 
Figure 3: Real system (dotted line) and model response – Ψ 
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5. Model validation 
 
Model validation s carried out in 
several steps. First, the dynamics 
in the vertical plane are 
validated. Since the process is 
operating in a stable region, an 
open loop experiment is 
conducted. In this case, input u1 
is a multi-step signal (u1 = 0,53 

 0,56  0,53  0,50  
0,53). The comparison between 
the response of the pitch angle ψ 
of the real helicopter (dotted 
line) and of the model (solid 
line) is shown in figure 3. 
 
Due to instability, the horizontal 
plane dynamics can not be 
validated in an open loop 
experiment. Therefore, a 
controller3 has to be provided, 
which will enable the tracking of 
an azimuth reference. The 
azimuth reference φref is a multi-
step signal (φref = 0  π/4    
–π/4  0). The comparison 
between the response of the 
azimuth φ of the real helicopter 
(dotted line) and of the model 
(solid line) is shown in figure 4. 
In both cases the same controller 
is used. In the case of the real 
system response, we can see that 
the azimuth φ is subject to 
significant external disturbances. 
 
Figure 5 shows the input signal 
u2 provided by the controllers in 
case of the real system4 (dotted 
line) and in case of the model 
(solid line). From the 
comparison we can see that the 
signals are quite similar in the 
transient states. However, there 
are some perceivable 
differences, especially in the 
interval from 125 s to 155 s, 
which occur due to the torque of the Coulomb friction.  
 
The Coulomb friction causes the helicopter body to stop rotating not only if the input u2 is set to a certain exact 
value, but also if it is set in a narrow band around that value. This means that two slightly different input signals 
                                                 
3 A modified PI-D controller is used. 
4 The input signal u2 is the average of 20 measurements. This way it is possible to reduce the impact of noise and 
the effect of drift of the parameters. There is especially noticeable drift of the parameters in the static 
characteristic of the tail motor-propeller subsystem, therefore it sometimes needs adjustment, in our case by 
factor k = 0.88. 

 
Figure 4: Real system (dotted line) and model response – φ 
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Figure 5: Real system (dotted line) and model response – u2 
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u2 can cause the same output signal φ. Obviously, the maximum torque difference generated by the two input 
signals is 2·Bφ2. Eq. (18) proves that the input signal difference causes a torque difference that is smaller than the 
mentioned bound. 
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When assessing the usability of the model, we encountered a simulation problem; namely, because of the non-
linearity caused by Coulomb friction, the simulation runs very slowly, despite the use of the solver for stiff 
systems (ode23s). Hence, it is reasonable to replace the nonlinear function with a piecewise linear function, i.e. 
to introduce a very high gain (in our case 108) and an appropriate saturation as a substitute for infinite gain 
around zero angular velocity. Such modification has practically no influence on the results; however, it does 
speed up the simulation 
considerably and what is more, 
even enables real-time5 
experiments and thus allows for 
online comparison of real and 
simulated signals. 
 
 
6. Control 
 
As mentioned, the developed 
mathematical model is intended 
for the design of control 
systems. In this section, a simple 
control approach is presented. 
Two independent modified PI-D 
controllers for each degree of 
freedom respectively are used, 
without considering the 
multivariable nature of the 
system. However, such basic 
approach can still turn out useful 
for stabilizing the helicopter 
body in a reference position, as 
shown in figure 6. 
 
 
7. Conclusions 
 
In the paper, modelling and identification of a laboratory helicopter was dealt with. The CE 150 laboratory 
helicopter made by Humusoft was presented as a multivariable system with two inputs and two outputs. Next, 
modelling of the helicopter was systematically tackled by disassembling the system into simpler subsystems, i.e. 
modelling of the sensors, vertical plane dynamics and horizontal plane dynamics. Furthermore, the vertical and 
horizontal plane dynamics have been analysed by modelling each relevant torque separately. In addition, 
measurement and identification of all the parameters needed was illustrated. Finally, validation of the developed 
mathematical model was treated. The validation results suggest that the developed mathematical model 
adequately represents the laboratory helicopter. In conclusion, a simple control approach was presented, which 
involves two independent modified PI-D controllers for each degree of freedom respectively. 
 
 
 

                                                 
5 Matlab 7.0.1 on Celeron 2.4 GHz, 512 MB. 
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Figure 6: Reference trajectories (dotted line) and 

closed loop model response – ψ, φ 
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